0.1 Resource type, timetable, fitness value

Let T_0 through T_{M-1} be sets of resources $R_{i,j}$ called resource types.

\[
T_0 = \{R_{0,0}, R_{0,1}, R_{0,2}, \ldots R_{0,n_0-1}\} \\
T_1 = \{R_{1,0}, R_{1,1}, R_{1,2}, \ldots R_{1,n_1-1}\} \\
T_2 = \{R_{2,0}, R_{2,1}, R_{2,2}, \ldots R_{2,n_2-1}\} \\
\vdots \\
T_{M-1} = \{R_{M-1,0}, R_{M-1,1}, R_{M-1,2}, \ldots R_{M-1,n_{M-1}}\}
\]

We can then define a timetable B as a set of N tuples of M resources.

\[
B = \{\langle R_{i,0}, R_{i,1}, \ldots R_{i,M-1}\rangle; \ i \in [0, N-1] \land R_{i,0} \in T_0, R_{i,1} \in T_1, \ldots R_{i,M-1} \in T_{M-1}\}
\] (1)

Timetable search space B^* is defined as a set of N tuples of M domains.

\[
B^* = \{\langle D_{i,0}, D_{i,1}, \ldots D_{i,M-1}\rangle; \ i \in [0, N-1] \land D_{i,0} \subseteq T_0, D_{i,1} \subseteq T_1, \ldots D_{i,M-1} \subseteq T_{M-1}\}
\] (2)

A resource type T_j is said to be a constant resource type for the timetable search space B^* if

\[
\text{card} D_{i,j} = 1 \ \forall i \in [0, N-1]
\] (3)

and a variable resource type otherwise.

A timetable B is said to be an element of the timetable search space B^* if

\[
B \in B^* \iff R_{i,j} \in D_{i,j} \ \forall i \in [0, N-1], \forall j \in [0, M-1]
\] (4)

Partial fitness functions f'_i through $f'_{K'-1}$ and f''_0 through $f''_{K''-1}$ are defined as functions that associate a timetable B with non-negative integers called partial fitness values.

\[
f'_i = f'_i(B) \\
f''_j = f''_j(B)
\]

A partial fitness function can be either mandatory f'_i or non-mandatory f''_j.

A fitness function of a timetable B is defined as the weighted sum of all defined partial fitness functions:

\[
f(B) = \sum_{i=0}^{K'-1} W'_i \cdot f'_i(B) + \sum_{j=0}^{K''-1} W''_j \cdot f''_j(B)
\] (5)

A solution function of a timetable B is defined as:

\[
s(B) = \begin{cases}
0 & \sum_{i=0}^{K'-1} f'_i(B) > 0 \\
1 & \sum_{i=0}^{K'-1} f'_i(B) = 0
\end{cases}
\] (6)
0.2 Timetabling problem

A timetabling problem is defined as:

\[TP = \langle T, B^*, f, s \rangle \quad (7) \]

Where \(T \) is a set of resource types, \(B^* \) is the timetable search space, \(f \) is the fitness function and \(s \) is the solution function.

A solution to the timetabling problem \(TP \) is a timetable \(B \) such that the following is true:

\[B \in B^* \quad (8) \]
\[s(B) = 1 \quad (9) \]

An optimal solution to the timetabling problem \(TP \) is a timetable \(B_o \) that also satisfies the following condition:

\[f(B_o) \leq f(B) \quad \forall B \in B^* \quad (10) \]