Mounting spectrum sensing VESNAs in London

Tomaž Šolc
tomaz.solc@ijs.si
Introduction

• In January I visited dr. Oliver Holland of Centre for Telecommunications Research, King's College London.
 • Installed and tested 2 SNE-ESHTER spectrum sensors at two locations in London.
 • Attempted some experiments with Carlson Rural Connect WRAN devices.

• This was part of involvement of the CREW project in the Ofcom TVWS pilot.
 • previously IT Portugal (CREW OC2 partner) also did some DVB-T signal measurements.
About King’s College London

- One of the top 25 universities in the world (Times Higher Education 2008)
- Fourth oldest in England
- 19,700 students from more than 150 countries
- 5,400 employees
- In the top group of UK universities for research earnings overall annual income of approximately £450 million.
About the sensors
Setup

- **Antenna (RX only)**: *Super Scan Stick mk 1*
 - Min Ø2.5 cm
 - Max Ø5.1 cm

- **Spectrum sensor**: 15 x 12 x 6 cm
 Hammond 1590UF

- **5 m Coax Cable**

- **170 cm Low Voltage Cable (12V)**

- **External AC Power Supply (Preferred)**
 - 110 – 240 V
 - 47 – 63 Hz
 - 0.5 A max (typ. ~5 W)
 - Flat Euro plug

- **IP Network with Internet Connectivity**

- **Preferably Dry Place**

- **UTP Cable (Ethernet)**
Hardware
Infrastructure

log-a-tec.eu

tcp connections

sensor¹

vesna_multiplex²

vesna_log¹

plotter⁴

monitor

munin³

browser

¹ https://github.com/sensorlab/vesna-spectrum-sensor
² https://github.com/sensorlab/vesna-multiplex
³ http://bokeh.pydata.org
⁴ http://munin-monitoring.org/
Currently collected data

\[f_c = 470 \ldots 790 \text{ MHz (in 1 MHz steps)} \]
\[f_{\text{sample}} = 2 \text{ MHz} \]
\[\text{BW} = 1 \text{ MHz} \]

N = 25000 samples

cca. 300 ms per 1 MHz step
(tuning + sampling + covariance calculation + sending data over Internet)

frequency channel
\((f_c = 40 \text{ MHz} + n \times 1 \text{ kHz}) \)

sensor timestamp

server timestamp

25 elements of the sample covariance matrix

TS 1421943705.955069 0.001000 CH 550000 DS 102.0 -12.0 -18.0 -10.0 0.0 -5.0 ... 0.0 DE
Live web demo

Installation
Location

- London Zoo
- Queen Mary University, London
- King's College London, Strand Campus
- London West End
- Crystal Palace
Sensor at KCL
Sensor at KCL

Antenna for SNE-ESHTER
Sensor at KCL

Another spectrum sensor (Wavecom?)

Antenna for SNE-ESHTER
Sensor at KCL
Sensor at KCL

Crystal Palace DVB-T transmitter in line of sight cca. 10 km away
Sensor at KCL
Sensor at KCL
Sensor at KCL
Sensor at KCL
Sensor at QMUL

Antenna for SNE-ESHTER
Sensor at QMUL

Antenna for SNE-ESHTER

Another spectrum sensor (JRC?)
Sensor at QMUL

Weather radar
(defunct probably)
First results
KCL, first measurement
KCL, comparing with R&S FSV
QMUL, first measurement
NOTE: Different location (King’s College London Guys Campus hospital tower), antenna and equipment.

From: “Some Initial Results and Observations from a Series of Trials within the Ofcom TV White Spaces Pilot”
The TV White Spaces opportunity

What does the TV band occupancy look like at a random location in the UK?

Several channels available at EIRP levels that are usable and do not cause interference to DTT.
Tests with Carlson devices
Overview

- Tried to establish an IP link over TVWS using Carlson Rural Connect devices.
 - Base station on the roof of the KCL Strand Campus.
 - CPE on floor lower.
- Run some tests on the link
- See if the link can be detected with the VESNA spectrum sensor on the roof
 - wasn't done because of lack of time.
Framework for access to TVWS in the UK

- List of qualifying WSDBs
- TVWS availability maps for protection of DTT
- Details of PMSE assignments
- Interference management tools

White space Database

TV band

Master device (licence exempt)

Slave device (licence exempt)

(Subject to Ofcom’s contractual arrangements)
Carlson Wireless Ruralconnect

- http://www.carlsonwireless.com/ruralconnect

- Built for US market, but adapted to operate under Ofcom/ETSI rules in terms of database (and database of databases) communication, channelization, etc. Variable powers and frequency range currently not adapted

- Our trial will use at least 2 base stations and 5 terminals (perhaps different sets at different times)

- Deployment scenarios include the public protection and disaster relief cases

- Also broadband provisioning cases, and to test longer-distance point-to-point links
Base station
Base station

![Base station interface](image)

Table: Base station information

<table>
<thead>
<tr>
<th>Name</th>
<th>Online</th>
<th>Channel</th>
<th>Enabled</th>
<th>Registered</th>
<th>DL SnR</th>
<th>UL SnR</th>
<th>DL rate</th>
<th>UL rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACROPOLIS Trial Base</td>
<td>✔️</td>
<td>✔️</td>
<td>N/A</td>
<td>✔️</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Station 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACROPOLIS Trial</td>
<td>❌</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terminal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACROPOLIS Trial</td>
<td>❌</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terminal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACROPOLIS Trial</td>
<td>❌</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terminal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACROPOLIS Trial</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>-</td>
<td>-</td>
<td>29.8</td>
<td>16QAM</td>
</tr>
<tr>
<td>Terminal 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Guid: a070271e-6c97-4dff-bd79-7f2a7cafa3a1

Id: 8628963

Bandwidth: Eight MHz

Tx Freq: 522 MHz

Tx Frames: 30107

Uptime: 0 days, 1 hour, 18 minutes

Thu Jan 22 2015 15:45:24 GMT+0000 (GMT Standard Time)

Base station Tx: Enabled
CPE
iperf doesn't work over TVWS...
Conclusions...

- Deployed SNE-ESHTER sensors work...
 - low noise floor compared to R&S FSV,
 - ~2 weeks of data already collected from sensor at KCL
- but...
 - Sensor at QMUL still hasn't called home
 (will hopefully get network access in March)
 - Sensor at KCL already required a hard reset after
 log-a-tec.eu server rebooted (not sure why)
- Apparently there are still problems with TVWS
 geolocation databases.
Questions?

Tomaž Šolc
tomaz.solc@ijs.si