Exploring an old Belkin UPS

27.04.2021 19:53

Sometime around June 2005 I bought a small Belkin UPS to protect my home server from blackouts. For more than 15 years it has worked flawlessly. It survived several generations of server hardware and required only one battery change during that time. I was using it until a few months ago when it had developed an unusual problem: it still powers the load without issues from the battery when the mains power goes out. However it shuts down the moment the mains voltage returns, even if the battery charge is not yet depleted. I was curious to see what went wrong with it, so I recently had a closer look at its circuit. I couldn't find any obvious problems and it's possible it only needs a new battery. Still, it was an interesting thing to pick apart.

Belkin 650 VA Regulator Pro Silver Series UPS

This is the Belkin 650 VA UPS, model number F6C650uSER-SB. I believe this model was sold under the brand name The Regulator Pro: Silver Series. It uses a 5250 mAh sealed lead-acid battery. The battery provided at most 30 minutes of run time. I suspect the run time is internally limited regardless of battery capacity. Even with a minimal load I never saw it running on battery for longer.

The UPS can be controlled through a RS-232 serial connection. I used it on Debian through the belkin driver in the Network UPS Tools. The only issue I had with the driver that I can remember was that it was impossible to turn off the beeper which is annoyingly loud on this model.

Parts of the plastic enclosure with marked latches.

Accessing the electronics without damage takes some effort. The plastic enclosure consists of two black halves (1, 2) and a silver front panel (3). Obviously, remove the battery and all external connections before opening. There is a single screw holding the two black parts together. This is accessible through a hole in one of the sides. After removing the screw the next step is to remove the silver front panel. The panel is strongly held in place with four latches that are marked on the photo above. I used a spudger to go around the edges and loosen it a bit. Still, removing it was mostly a matter of applying brute force. After detaching the front panel the two black halves split easily.

Disassembled Belkin UPS showing the circuit board and internal wiring.

The circuit board and everything else inside is held in place with plastic latches on one of the halves of the enclosure. I had no problems removing the circuit once the enclosure was open. There are two large, single-side printed circuit boards. The horizontal board on the picture above holds the power conversion electronics. The vertical board contains the control circuit and the optically-isolated serial interface. There are also some parts, like ferrite beads, fuses and so on that are just hanging off the wires in the bottom right corner.

The main controller IC in the Belkin UPS.

The control board is soldered to the power board and isn't easily removable. The main controller appears to be this large IC in a 42-pin DIP package. The chip is marked ST72C334. It seems to be an ST7-series 8-bit microcontroller from STMicroelectronics. The C in the part number tells that the software is stored in flash memory, not factory-coded ROM. Sticker on it reads 5015320501 (probably some internal part number) and date code 0113 (I'm guessing week 13 of 2001 - it must have been already several years old when I bought it in 2005).

A glob of solder hanging off one of the tabs that hold the control board.

I've noticed a glob of solder just barely holding onto one of the tabs that hold the control board in place. It looked like it was just moments away from dropping away and causing a short circuit disaster on the circuit below. The solder joint also had a crack in it, however that tab appears to be only for mechanical support and doesn't have any electrical function. The break couldn't have been a source of the problems I had with the UPS.

Top side of the power circuit board with labeled parts.

Unsurprisingly for its relatively low cost and small size, this is an offline UPS. When mains power is present, the load is powered directly from the input via a relay (1). A battery charger keeps the 12 V battery topped up from the mains AC voltage (2). When mains power is lost, a high-voltage DC-DC boost converter converts the 12 V battery to a high DC voltage (3). The H-bridge 50 Hz inverter then chops that high DC voltage to AC (4) to power the load. There is also a common-mode filter on the power board (5) and a current transformer (6) that is used by the controller to measure the current drawn by the load.

I've traced out the main parts of the circuit. The sections of the schematic are labeled in the same way as the parts of the circuit board in the previous photograph. Obviously there is a lot missing, but the topology of the voltage converters is clearly visible.

A rough schematic with the main components of the Belkin UPS.

There is no isolation in this circuit. Everything is referenced to mains voltage, even the battery and the control circuit. Only the serial interface is separated from the rest of the circuit via optocouplers. This means that it's a very bad idea to connect anything to the battery terminals that's not a battery.

A weird detail in this circuit is the relay with the question mark. It connects the DC-DC boost converter to the battery charger. I'm not sure what its purpose is. It might be there to keep the 400 V capacitor charged while the mains power is present so that the inverter can start faster. However in that case a diode should work just as well. It might also serve as a part of some kind of a self-test function.

I haven't found exactly how the control circuit is powered. There is no obvious DC-DC converter dedicated to it. Very likely there is a linear regulator hidden somewhere that is powered from the 12V battery voltage. I'm certain that the relay coils are powered from the battery. What this means is that if the battery is depleted or degraded to the point where it can't activate the main relay the UPS won't start. The UPS by itself cannot recover from a completely discharged battery since the relays in their idle position disconnect the charger, and everything else, from the mains voltage.


As I mentioned above, this UPS developed a problem where it shuts off when the mains power comes back after an outage. The switch-over from mains to battery power works fine. It's the transition from battery power back to mains that's broken. After an outage you need to long press the button on the front panel to restore power to the load. If the load is still running on battery power when the mains comes back it will lose power without warning (i.e. without a clean shutdown).

I did a few basic checks. Visually everything looks good. Surprisingly, all the big electrolytic capacitors also seem just fine. The pair of 2200 μF 16 V in parallel with the battery measured in-circuit as 4700 μF and 40 mΩ ESR. The 22 μF 400 V for the inverter input voltage measured 20 μF and 1.7 Ω ESR.

The battery I bought in 2014 has a rated capacity of 5250 mAh. After 7 years of use it still retained 2300 mAh when I measured it outside of the UPS. The internal resistance measured around 1 Ω, which does seem a big high. Obviously this battery is ripe for replacement. It might be that the cause of my problems is simply due to the high internal resistance of the battery. When the mains power comes back, the battery must actuate the main relay as well as continue to power the inverter. Perhaps this current spike causes enough of a voltage drop to reset the control circuit.

Unfortunately I don't have an isolation transformer so I can't do much debugging of the circuit while it's live. Connecting an oscilloscope to it is out of the question so I can't check for voltage drops on the battery side. It certainly seems possible though that simply buying a new battery would fix it. When the previous battery went bad the UPS was completely dead. Only reading on the web that this is a typical symptom of a bad battery in these models convinced me to just replace the battery instead of buying a new UPS. I don't need another UPS at the moment though so I don't think I'll go that route. From the last time I remember it wasn't trivial to find a supplier anyway. For now this UPS will just end up in my spare computer parts pile.


I remember this was a pretty expensive gadget when I bought it even though it was the cheapest entry level model I could find. If I knew that it would serve me for 15 years I wouldn't hesitate to buy it. Looking inside it now it also looks well designed with plenty of safety features. I guess it's longevity isn't that surprising though. Even at the start this UPS was never loaded anywhere near its maximum rating. Over the years my server only grew less power hungry with each update. The last computer the UPS was connected to didn't even register on its power meter. It always showed that the output was unloaded.

Posted by Tomaž | Categories: Analog

Add a new comment


(No HTML tags allowed. Separate paragraphs with a blank line.)