Rapitest Socket Tester

29.01.2016 17:47

John Ward has a series of videos on YouTube where he discusses the Rapitest Socket Tester. This is a device that can be used to quickly check whether a UK-style 230 V AC socket has been wired correctly. John explains how a device like that can be dangerously misleading, if you trust its verdict too much. Even if Rapitest shows that the socket passed the test, the terminals in the socket can still be dangerously miswired.

Rapitest Socket Tester (Part 1)

(Click to watch Rapitest Socket Tester (Part 1) video)

I have never seen a device like this in person. Definitely they are not common in this part of the world. Possibly because the German "Schuko" sockets we use don't define the positions of the live and neutral connections and hence there are fewer mistakes to make in wiring them. The most common testing apparatus for household wiring jobs here is the simple mains tester screwdriver (about which John has his own strong opinion and I don't completely agree with him there).

From the first description of the Rapitest device, I was under the impression that it must contain some non-linear components. Specifically after hearing that it can detect when the line and neutral connections in the socket have been reversed. I was therefore a bit surprised when I saw that the PCB inside the device contains just a few resistors. I was curious how it manages to do its thing with such a simple circuit, so I went slowly through the part of the video that shows the disassembly and sketched out the schematic:

Schematic of the Rapitest Socket Tester

S1 through S3 are the neon indicator lamps that are visible on the front of the device, left to right. L, N and E are line, neutral and earth pins that fit into the corresponding connections in the socket. It was a bit hard to read out the resistor values from the colors on the video, so there might be some mistakes there, but I believe the general idea of the circuit is correct.

It's easy to see from this circuit how the device detects some of the fault conditions that are listed on the front. For instance, if earth is disconnected, then S3 will not light up. In that case, voltage on S3 is provided by the voltage divider R7 : R8+R1+R2 which does not provide a high enough voltage to strike an arc in the lamp (compared to R7 : R8, if earth is correctly connected).

Similarly, if line and neutral are reversed, only the R3 : R5 divider will provide enough voltage and hence only S1 will light up. S3 has no voltage since it is connected across neutral and earth in that case. For S2, the line voltage is first halved across R2 and R1 and then reduced further due to R4 and R6.

Rapitest 13 Amp Socket Tester

Image by John Ward

However, it's hard to intuitively see what would happen in all 64 possible scenarios (each of the 3 terminals can in theory be connected to either line, neutral, earth or left disconnected, hence giving 43 combinations). To see what kind of output you would theoretically get in every possible situation, I threw together a simple Spice simulation of the circuit drawn above. A neon lamp is not trivial to simulate in Spice, so I simplified things a bit. I modeled lamps as open-circuits and only checked whether the voltage on them would reach the breakdown voltage of around 100 V. If the voltage across a lamp was higher, I assumed it would light up.

The table below shows the result of this simulation. First three columns show the connection of the tree socket terminals (NC means the terminal is not connected anywhere). I did not test situations where a terminal would be connected over some non-zero impedance. An X in one of the last three columns means that the corresponding lamp would turn on in that case.

  L N E S1 S2 S3
1 L L L      
2 L L N     X
3 L L E     X
4 L L NC      
5 L N L X    
6 L N N X X X
7 L N E X X X
8 L N NC X X  
9 L E L X    
10 L E N X X X
11 L E E X X X
12 L E NC X X  
13 L NC L      
14 L NC N   X X
15 L NC E   X X
16 L NC NC      
17 N L L X X X
18 N L N X    
19 N L E X    
20 N L NC X X  
21 N N L     X
22 N N N      
23 N N E      
24 N N NC      
25 N E L     X
26 N E N      
27 N E E      
28 N E NC      
29 N NC L   X X
30 N NC N      
31 N NC E      
32 N NC NC      
33 E L L X X X
34 E L N X    
35 E L E X    
36 E L NC X X  
37 E N L     X
38 E N N      
39 E N E      
40 E N NC      
41 E E L     X
42 E E N      
43 E E E      
44 E E NC      
45 E NC L   X X
46 E NC N      
47 E NC E      
48 E NC NC      
49 NC L L      
50 NC L N      
51 NC L E      
52 NC L NC      
53 NC N L      
54 NC N N      
55 NC N E      
56 NC N NC      
57 NC E L      
58 NC E N      
59 NC E E      
60 NC E NC      
61 NC NC L      
62 NC NC N      
63 NC NC E      
64 NC NC NC      

I marked with blue the six combinations (7, 8, 15, 19, 37, 55) that are shown on the front of the device. They show that in those cases my simulation produced the correct result.

Five rows marked with red show situations where the device shows "Correct" signal, but the wiring is not correct. You can immediately see two classes of problems that the device fails to detect:

  • It cannot distinguish between earth and neutral (combinations 6, 10 and 11). This is obvious since both of these are on the same potential (in my simulation and to some approximation in reality as well). However, if a residual-current device is installed, any fault where earth and neutral have been swapped should trip it as soon as any significant load is connected to the socket.
  • It also fails to detect when potentials have been reversed completely (e.g. line is on both neutral and earth terminals and either neutral or earth is on the line terminal - combinations 17 and 33). This is the deadly as wrong as you can get situation shown by John in the second part of his video.

Under the assumption that you only have access to AC voltages on the three terminals in the socket, both of these fault situations are in fact impossible to distinguish from the correct one with any circuit or device.

It's worth noting also that the Rapitest can give a dangerously misleading information in other cases as well. For instance, the all-lights-off "Line not connected" result might give someone the wrong impression that there is no voltage in the circuit. There are plenty of situations where line voltage is present on at least one of the terminals, but all lamps on the device are off.

Posted by Tomaž | Categories: Analog

Add a new comment


(No HTML tags allowed. Separate paragraphs with a blank line.)